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MAGNETO-OPTICAL TRAPS

* Broadly speaking, magneto-optical traps trap and cool
atoms

¢ For small deviations from the center of the trap, the
trapping potential can be modelled as a simple harmonic
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Figure 1: Image taken from Wikipedia 2



MOTIVATION AND BACKGROUND

* Magneto-optical traps allow us to study:
¢ Dynamics and equilibration
¢ Interplay between quantum fluctuations and thermal
fluctuations
 Effectively 1D systems
* Tunable interactions by varying the magnetic field in an
optical trap

e For our purposes, we will focus on effectively 1D systems
with tunable interactions

¢ Bottom-up approach to few-to-many body physics



1D SIMPLE HARMONIC OSCILLATOR
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Figure 2: Discrete energy levels of simple harmonic oscillator 4



DYNAMICS IN A MAGNETO-OPTICAL TRAP

¢ How can we understand the dynamics of systems confined
to a magneto-optical trap?

¢ Interactions?
* Exchange statistics?
¢ Look at simple cases: two identical bosons and two
identical fermions in 1D



ZERO-RANGE INTERACTION BETWEEN TWwWO IDENTICAL

BOSONS

* By exchange symmetry, we investigate only even-parity
solutions to the time-independent Schrédinger equation

e Zero-range interaction is given by V*(z) = g1 6(z)

e Solving (Hyo + V)¢ = Ev using a Green’s function
approach, we obtain the following energy spectrum:
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Figure 3: Agrees with K. Kanjilal and D. Blume. Phys. Rev. A 70, 042709 (2004).



ZERO-RANGE INTERACTION BETWEEN TWwWO IDENTICAL

FERMIONS

¢ Similar approach as before, with exchange antisymmetry

and interaction V~(z) = g— @%
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Figure 4: Agrees with K. Kanjilal and D. Blume. Phys. Rev. A 70, 042709 (2004). 7



FERMI-BOSE DUALITY

* Weakly-interacting fermions act like strongly-interacting
bosons and vice versa

¢ Same energies, but different wavefunctions
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FERMI-BOSE DUALITY

* Same energies, but different wavefunctions

Two-Body Wave Functions for E = (1/2)hw
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2 SPIN-UP FERMIONS, 1 SPIN-DOWN FERMION

* Only have interactions between spin-up and spin-down
e Interaction Vi, = g1 [0(z1 — 2z3) + §(2z2 — 23)]
* Spin-up particles have coordinates z1, z5, resp., and
spin-down particle has coordinate z3
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Figure 5: Zero-range interactions
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2 SPIN-UP FERMIONS, 1 SPIN-DOWN FERMION

* We can derive the following equation for the relative
eigenenergies:
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2 SPIN-UP, 1 SPIN-DOWN FERMION ENERGY SPECTRUM

¢ Wrote code to numerically solve the eigenvalue equation
and determine the eigenenergies for negative relative

parity
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CHECKING THESE RESULTS

* We have a few sanity checks:
* Expected non-interacting limit relative energies
* Expected strongly-interacting limit relative energies
* Perturbative energy shifts corresponding to slopes near the
non-interacting and strongly-interacting limits

\ / V(z) o 22

? E| = %hw

?* Ey = 1hw

Figure 6: Ground state of 2F1F’ system with no interaction 13
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CHECKING THESE RESULTS

* We have a few sanity checks:
* Expected non-interacting limit relative energies of
2hw, 4hw, 6hw, 8hw, . .. with degeneracies of 1,1,2,3, ...
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CHECKING THESE RESULTS

¢ First order non-degenerate perturbation theory gives that
for the state in the non-interacting limit with relative
energy 2/w, one expects a perturbative shift of

AE =gy / (¢1(z12)d0(2123)) " (6(z13) + 6(223)) D1 (212) Po(212,3)dz
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THREE IDENTICAL BOSONS

¢ A similar analytical derivation and numerical
implementation gives the following spectra:
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¢ Again, these are consistent with the “sanity checks”
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THREE IDENTICAL FERMIONS

Energy in Oscillator Units

¢ A similar analytical derivation and numerical
implementation gives the following spectra
(work-in-progress):
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* Some features agree with our expectations, so the exact

issue is difficult to identify
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DUALITY REVISITED

¢ The Fermi-Bose duality also holds between 3 identical
bosons and 3 identical fermions!
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Figure 7: Bosonic picture Figure 8: Fermionic picture
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DUALITY REVISITED

Figure 9: Bosonic picture Figure 10: Fermionic picture 19
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FUTURE WORK

* Continue work on 3F relative energy spectrum
* Move on to systems with four particles

¢ Adapt techniques to anyons
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