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MAGNETO-OPTICAL TRAPS

• Broadly speaking, magneto-optical traps trap and cool
atoms

• For small deviations from the center of the trap, the
trapping potential can be modelled as a simple harmonic
oscillator

Figure 1: Image taken from Wikipedia 2



MOTIVATION AND BACKGROUND

• Magneto-optical traps allow us to study:
• Dynamics and equilibration
• Interplay between quantum fluctuations and thermal

fluctuations
• Effectively 1D systems
• Tunable interactions by varying the magnetic field in an

optical trap

• For our purposes, we will focus on effectively 1D systems
with tunable interactions

• Bottom-up approach to few-to-many body physics
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1D SIMPLE HARMONIC OSCILLATOR

•
(
− ℏ2

2m
∂2

∂z2 + V(z)
)
ψ(z) = Eψ(z)

• V(z) = 1
2 mω2

z z2

• Can experimentally be realized by taking ωx, ωy ≫ ωz

z

V(z)
V(z) ∝ z2

E0 = 1
2ℏω

E1 = 3
2ℏω

E2 = 5
2ℏω

E3 = 7
2ℏω

Figure 2: Discrete energy levels of simple harmonic oscillator 4



DYNAMICS IN A MAGNETO-OPTICAL TRAP

• How can we understand the dynamics of systems confined
to a magneto-optical trap?

• Interactions?
• Exchange statistics?

• Look at simple cases: two identical bosons and two
identical fermions in 1D
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ZERO-RANGE INTERACTION BETWEEN TWO IDENTICAL

BOSONS

• By exchange symmetry, we investigate only even-parity
solutions to the time-independent Schrödinger equation

• Zero-range interaction is given by V+(z) = g+δ(z)
• Solving (HHO + V+)ψ = Eψ using a Green’s function

approach, we obtain the following energy spectrum:

Figure 3: Agrees with K. Kanjilal and D. Blume. Phys. Rev. A 70, 042709 (2004). 6



ZERO-RANGE INTERACTION BETWEEN TWO IDENTICAL

FERMIONS

• Similar approach as before, with exchange antisymmetry
and interaction V−(z) = g−

δ(z)
z

∂
∂z

Figure 4: Agrees with K. Kanjilal and D. Blume. Phys. Rev. A 70, 042709 (2004). 7



FERMI-BOSE DUALITY

• Weakly-interacting fermions act like strongly-interacting
bosons and vice versa

• Same energies, but different wavefunctions
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FERMI-BOSE DUALITY

• Same energies, but different wavefunctions
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2 SPIN-UP FERMIONS, 1 SPIN-DOWN FERMION

• Only have interactions between spin-up and spin-down
• Interaction Vint = g+ [δ(z1 − z3) + δ(z2 − z3)]

• Spin-up particles have coordinates z1, z2, resp., and
spin-down particle has coordinate z3

↑ 1

↑ 2

↓ 3

Figure 5: Zero-range interactions
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2 SPIN-UP FERMIONS, 1 SPIN-DOWN FERMION

• We can derive the following equation for the relative
eigenenergies: 

A0,0 . . . A0,k
...

. . .
...
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2 SPIN-UP, 1 SPIN-DOWN FERMION ENERGY SPECTRUM

• Wrote code to numerically solve the eigenvalue equation
and determine the eigenenergies for negative relative
parity
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CHECKING THESE RESULTS

• We have a few sanity checks:
• Expected non-interacting limit relative energies
• Expected strongly-interacting limit relative energies
• Perturbative energy shifts corresponding to slopes near the

non-interacting and strongly-interacting limits

V(z) ∝ z2

E0 = 1
2ℏω

E1 = 3
2ℏω

E2 = 5
2ℏω

E3 = 7
2ℏω

Figure 6: Ground state of 2F1F’ system with no interaction 13
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CHECKING THESE RESULTS

• We have a few sanity checks:
• Expected non-interacting limit relative energies of

2ℏω, 4ℏω, 6ℏω, 8ℏω, . . . with degeneracies of 1, 1, 2, 3, . . .
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CHECKING THESE RESULTS

• First order non-degenerate perturbation theory gives that
for the state in the non-interacting limit with relative
energy 2ℏω, one expects a perturbative shift of

∆E = g+
∫ (

ϕ1(z12)ϕ0(z12,3)
)∗

(δ(z13) + δ(z23))ϕ1(z12)ϕ0(z12,3)dz

=
3

2
√
π

g+ ≈ 0.846g+

15



THREE IDENTICAL BOSONS

• A similar analytical derivation and numerical
implementation gives the following spectra:

• Again, these are consistent with the “sanity checks”

16



THREE IDENTICAL FERMIONS

• A similar analytical derivation and numerical
implementation gives the following spectra
(work-in-progress):

• Some features agree with our expectations, so the exact
issue is difficult to identify
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DUALITY REVISITED

• The Fermi-Bose duality also holds between 3 identical
bosons and 3 identical fermions!

Figure 7: Bosonic picture Figure 8: Fermionic picture
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DUALITY REVISITED

Figure 9: Bosonic picture Figure 10: Fermionic picture 19
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FUTURE WORK

• Continue work on 3F relative energy spectrum

• Move on to systems with four particles

• Adapt techniques to anyons
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